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Self-propulsion of oscillating wings in incompressible flow
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SUMMARY

In this paper, we show that the oscillatory motion of an airfoil (wing) in an ideal fluid can determine the
apparition of thrust. In the framework of the linearized perturbation theory, the pressure jump over the
oscillating wing is the solution of a two-dimensional hypersingular integral equation. Using appropriate
quadrature formulas, we discretize the oscillatory lifting surface integral equation in order to obtain the
jump of the pressure across the surface. Integrating numerically, we obtain the drag coefficient. For some
oscillatory motions, if the frequency of the oscillations surpasses a certain value, the drag coefficient
becomes negative, i.e. there appears a propulsive force. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The thrust caused by the oscillatory or undullatory motion of rigid or flexible thin airfoils is a
very important aerodynamic phenomenon with many engineering applications to microvehicles
motion. Therefore, a great number of papers were devoted to the applications of computational
fluid mechanics to this topic. In our paper, we utilize the lifting surface theory for investigating
the incompressible flow past a wing performing an oscillatory (or undullatory) motion. As it is
known, this theory furnishes good results for thin airfoils and small angles of attack. In exchange
for the limitations concerning the geometry of the airfoil, the lifting surface theory has a nice
mathematical formulation which leads to an integral equation for the jump of the pressure across
the airfoil.
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2 A. CARABINEANU

The problem of the oscillatory thin wings in subsonic flow (and implicitly in incompressible
flow) was studied, among others by Watkins et al. [1], Laschka [2], and Landahl [3]. In their
theory, the integral equation, originally performed by Küssner [4] is obtained by determining the
acceleration potential due to a continuous distribution of doublets on the wing.

Later, Dragoş [5] studied the problem of oscillating wings by means of the fundamental solution
method. Homentcovschi [6] utilized the Fourier transform for obtaining the fundamental solutions
of the linear Euler system and then the general integral equation relating the jump of the pressure
and the downwash distributions for the unsteady flow past a lifting surface, moving on a cylindrical
surface. From this equation, it was deduced the integral equation for the oscillating wing.

Another method for deducing the fundamental solutions of the linear Euler system and then the
integral equation of the oscillating wing is presented in Appendix A of this paper.

Many numerical methods were developed for solving the integral equation of steady or oscillatory
lifting surface equation. Among them, we mention the methods considered by Ichikawa [7], Ueda
and Dowell [8], Eversman and Pitt [9], etc.

The great number of papers devoted to the numerical methods used for integrating the lifting
surface integral equation is justified by the difficulties caused by the singularities of the kernel.
In our paper, in order to discretize the integral equation, we split the kernel of the equation into
several kernels for which we provide appropriate quadrature formulas depending on the type of
singularity of the kernel. By solving the discretized integral equation, we calculate the jump of
the pressure over the wing.

After obtaining the pressure field we calculate, by performing a numerical integration, the
average drag. We study an example of oscillatory motion of a flexible delta wing and we notice
that if the reduced frequency surpasses a critical value, the drag becomes negative, i.e. it appears a
propulsive force. The numerical method we present herein is valid for all thin airfoils of arbitrary
aspect ratio. In order to compare the numerical results with analytical ones, we consider the delta
wing of low aspect ratio. Performing an asymptotic expansion of the kernel of the integral equation
with respect to � (the aspect ratio) and neglecting the terms of order O(�2 ln�), one obtains
instead of a two-dimensional integral equation a one-dimensional hypersingular integral equation
(for the jump of the pressure) which is solved analytically. The one-dimensional equation is an
equation which approximates the original one; we deduce therefore that the analytical results are
approximate results and the order of the asymptotic approximation is O(� ln�). A comparison
between the analytical and numerical results for the symmetrical delta wing of low aspect ratio
shows a very good agreement.

2. THE INTEGRAL EQUATION

We consider a system of coordinates Ox (1)y(1)z(1) related to the wing, and we introduce the
dimensionless space coordinates (x, z) = (x (1)/a, z(1)/a), taking the wing length (more precisely
the maximum value of the wing chord) a as reference length along the vertical direction (Oz(1)-
axis direction) and along the direction of the unperturbed uniform flow (Ox (1)-axis direction).
We introduce also the dimensionless space coordinate y = y(1)/b, taking the wing half-span b
as reference length along the Oy(1)-axis direction. Denote by D(1) the wing projection on the
Ox (1)y(1)-plane. Let

0= F(x (1), y(1), z(1), t) = z(1) − h(1)(x (1), y(1)) exp(i�t), (x (1), y(1)) ∈ D(1) (1)
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SELF-PROPULSION OF OSCILLATING WINGS 3

be the equation of the wing (we neglect the thickness of the wing). We notice that the coordinates
(x (1), y(1)) of every point of the wing remain unchanged and the coordinate z(1) varies harmonically.
Throughout this paper, depending on the context (like in many other papers dedicated to the
oscillatory flow of a fluid), when we encounter a complex number or function, we have in mind
its real part.

Let �0Re( f exp(i�t)) be the jump of the pressure over the oscillating wing. � is the frequency of
the oscillation, V0 is the translation velocity of the unperturbed flowwith respect to the Ox (1)y(1)z(1)

frame of reference and �= b/a is the aspect ratio. Introducing the dimensionless functions and
variables

h(x, y) = h(1)(x (1), y(1))

a
, �̃= �a

V0
, f̃ (x, y)= f (ax, by)

V 2
0

x0 = x − �, y0 = y − �

one demonstrates [6, 10] that the integral equation of the oscillatory thin wing is

−�

4�

∫ ∫ ∗

D
f̃ (�, �) exp(−i�̃x0)

(∫ x0

−∞
exp(i�̃s)

(s2 + �2y20)
3/2

ds

)
d� d�

= �h(x, y)

�x
+ i�̃h(x, y) (2)

where (x, y) ∈ D if and only if (x (1), y(1)) ∈ D(1).
The asterisk indicates the finite part in the Hadamard sense of the integral.

3. THE DISCRETIZATION OF THE INTEGRAL EQUATION FOR THE SYMMETRICAL
OSCILLATING DELTA FLAT PLATE

We consider the oscillating delta wing. The equations of the leading edge of D(1) are

y(1)
± (x (1)) = ± b

a
(x (1)), x (1) ∈ [0, a] (3)

and the equations of the leading edge of D are

y±(x)= ± x, x ∈ [0, 1] (4)

For solving numerically the integral equation (2), we have to discretize the left-hand member in
order to obtain an algebraic system of equations. To this aim, we split the kernel K (x, y; �, �) =∫ x0
−∞[exp(i�̃s)/(s2 + �2y20)

3/2] ds into several kernels in order to put into evidence the kind
of singularities we are dealing with and to find afterwards the most suitable quadrature
formulas.
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4 A. CARABINEANU

We have step by step

∫ x0

−∞
exp(i�̃s)

(s2 + �2y20)
3/2

ds =
∫ x0

−∞
exp(i�̃s) − 1

(s2 + �2y20)
3/2

ds

+ 1

�2y20

(
1 + x0

|x0|
)

+ 1

�2y20

⎛⎝ x0√
x20 + �2y20

− x0
|x0|

⎞⎠ (5)

∫ x0

−∞
exp(i�̃s) − 1

(s2 + �2y20)
3/2

du =
∫ x0

0

exp(i�̃s) − 1

(s2 + �2y20)
3/2

ds +
∫ ∞

0

exp(−i�̃s) − 1

(s2 + �2y20)
3/2

ds (6)

∫ ∞

0

exp(−i�̃s) − 1

(s2 + �2y20)
3/2

ds =− 1

�2y20
+
∫ ∞

0

cos �̃s

(s2 + �2y20)
3/2

ds − i
∫ ∞

0

sin �̃s

(s2 + �2y20)
3/2

ds (7)

The integrals from the right-hand part of (7) represent the sine and cosine Fourier transforms of
(s2 + �2y20)

−3/2 and in [11] one shows that∫ ∞

0

cos �̃s

(s2 + �2y20)
3/2

ds = �̃

�|y0|K1(�̃�|y0|) (8)

∫ ∞

0

sin �̃s

(s2 + �2y20)
3/2

ds = �

2

�̃

�|y0| (L−1(�̃�|y0|) − I1(�̃�|y0|)) (9)

where L−1 is a Strouve function, I1, K1 are Bessel functions and the series expansions are

I1(x)=
∞∑
k=0

(x/2)2k+1

k!(k + 1)! (10)

K1(x)= I1(x) ln
x

2
+ 1

x
−

∞∑
k=0

(x/2)2k+1

k!(k + 1)! (�(k + 1) + �(k + 2)) (11)

L−1(x)=
∞∑
k=0

(x/2)2k

�(k + 3
2 )�(k + 1

2 )
(12)

where � represents the logarithmic derivative of Euler’s � function.
We also have

∫ x0

0

exp(i�̃s) − 1

(s2 + �2y20)
3/2

ds =
∫ x0

0

exp(i�̃s) − 1 − i�̃s + �̃2s2/2

(s2 + �2y20)
3/2

ds

− i�̃

(x20 + �2y20)
1/2

+ i�̃

|y0| + �̃2x0
2(x20 + �2y20)

1/2

− �̃2

2
ln(x0 +

√
(x02 + �2y20)) (13)
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SELF-PROPULSION OF OSCILLATING WINGS 5

Hence

K (x, y; �, �) = K1(x, y; �, �) + · · · + K8(x, y; �, �)

and the integral equation (2) becomes

�

4�

8∑
i=1

∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)Ki (x, y; �, �) d� d�

=−
(

�h(x, y)

�x
+ i�̃h(x, y)

)
exp(i�̃x) (14)

Hence

K1(x, y; �, �) = 1

�2y20

⎛⎝ x0√
x20 + �2y20

− x0
|x0|

⎞⎠ (15)

K2(x, y; �, �) = 1

�2y20

(
1 + x0

|x0|
)

(16)

K3(x, y; �, �) = −i�̃√
x20 + �2y20

(17)

K4(x, y; �, �) = − �̃2

2

x0
|x0| ln(|x0| +

√
x20 + �2y20) (18)

K5(x, y; �, �) = �̃2

2
ln(�|y0|)

(
1 + x0

|x0|
)

(19)

K6(x, y; �, �) = �̃2x0√
x20 + �2y20

(20)

K7(x, y; �, �) = �̃

�|y0|K1(�̃�|y0|) − 1

�2y20
− �̃2

2
ln

�̃�|y0|
2

(21)

+ i��̃2

2�|y0|
(
I1(�̃�|y0|) − L−1(�̃�|y0|) + 2

�

)
+ �̃2

2
ln

�

2
(22)

K8(x, y; �, �) =
∫ x0

0

exp(i�̃s) − 1 − i�̃s + �̃2s2/2

(s2 + �2y20)
3/2

ds (23)

We shall provide adequate quadrature formulas for the integrals from the left-hand part of
Equation (14) in order to discretize it. The analytical results from the sixth section suggest us
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6 A. CARABINEANU

to presume the following behaviour of the unknown function:

f̃ (�, �) = g(�, �)√
�2 − �2

whence we have

∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)K1(x, y; �, �) d� d�

= 1

�2
FP
∫ 1

−1

1

y20

⎛⎝∫ 1

|�|
g(�, �)√
�2 − �2

exp(i�̃�)

⎛⎝ x0√
x20 + �2y20

− x0
|x0|

⎞⎠ d�

⎞⎠ d� (24)

where FP stands for the finite part of the hypersingular integral as it is introduced by Fox [12].
Taking into account that the integral from the right-hand side vanishes for |�| = 1, we assume the
following behaviour:

∫ 1

|�|
g(�, �)√
�2 − �2

exp(i�̃�)

⎛⎝ x0√
x20 + �2y20

− x0
|x0|

⎞⎠ d�

=
√
1 − �2G(x, y; �) (25)

where G(x, y; �) is finite in � =±1. We consider on D a net consisting of the nodes (grid points,
control points) (xi , y j ) = (i/n, (2 j + 1)/2n), i = 1, . . . , n, j =− i, −i + 1, . . . , i − 1. For the
hypersingular integral occurring in (24) we may use the quadrature formula for equidistant control
points given by Dumitrescu [13]:

FP
∫ 1

−1

√
1 − �2G(xk, yl; �)

(yl − �)2
d�=

n−1∑
j=−n

G(xk, yl; y j )Al j (26)

Al j = − arccos(y j ) + arccos(y j+1) +
√
1 − y2j

y j − yl

−
√
1 − y2j+1

y j+1 − yl
− yl√

1 − y2l

ln

∣∣∣∣Cl( j+1)

Cl j

∣∣∣∣ (27)

with

Cl j =
√
1 − y j ·√1 + yl −√

1 + y j ·√1 − yl√
1 − y j ·√1 + yl +√

1 + y j ·√1 − yl
(28)
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SELF-PROPULSION OF OSCILLATING WINGS 7

We have the quadrature formula

G(xk, yl; y j ) =
n∑

i= j
gi j Bi jkl (29)

with

gi j = g(xi j , y j )

xi j =

⎧⎪⎪⎨⎪⎪⎩
xi − 1

2n
, −i< j<i − 1

xi − 1

4n
, j ∈ {−i, i − 1}

, x̃i j =

⎧⎪⎪⎨⎪⎪⎩
xi − 1

n
, −i< j<i − 1

xi − 1

2n
, j ∈ {−i, i − 1}

(30)

Bi jk = Ei j Di jkl√
1 − y2j

(31)

Ei j = exp(i�̃xi j )

[
ln(xi +

√
x2i − y2j ) − ln(xi j +

√
x̃2i j − y2j )

]
(32)

Di jkl =
⎛⎝ xk − xi j√

(xk − xi j )2 + �2(yl − y j )
2

− xk − xi j
|xk − xi j |

⎞⎠ , −i< j<i − 1 (33)

Finally, we deduce∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)K1(xk, yl; �, �) d� d� =

n∑
i=1

i−1∑
j=−i

gi j K
(1)
i jkl (34)

where

K (1)
i jkl =

Al j Bi jkl
�2

(35)

Let

K2(x, y; �, �) = 1

�2y20

(
1 + x0

|x0|
)

(36)

We have ∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)K2(x, y; �, �)d� d�

= 2

�2
FP
∫ x

−x

1

y20

⎛⎝∫ x

|�|
g(�, �) exp(i�̃�)√

�2 − �2
d�

⎞⎠ d� (37)

Since the integral inside the brackets vanishes for x = |�|, we may assume the behaviour∫ xk

|�|
g(�, �) exp(i�̃�)√

�2 − �2
d�=

√
x2k − �2G(k)(xk; �) (38)
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8 A. CARABINEANU

where G(k)(xk; �) is finite for xk = |�|. We have therefore∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)K2(xk, yl; �, �) d� d�

= 2

�2
FP
∫ xk

−xk

√
x2k − �2G(k)(xk; �)

(yl − �)2
d� = 2

�2

k−1∑
j=−k

G(k)(xk; y j )A
(k)
l j (39)

where

A(k)
l j = − arccos

(
y j
xk

)
+ arccos

(
y j+1

xk

)

+
√
x2k − y2j

y j − yl
−
√
x2k − y2j+1

y j+1 − yl
− yl√

x2k − y2l

ln

∣∣∣∣∣∣C
(k)
l( j+1)

C (k)
l j

∣∣∣∣∣∣ (40)

with

C (k)
l j =

√
xk − y j ·√xk + yl − √

xk + y j ·√xk − yl√
xk − y j ·√xk + yl + √

xk + y j ·√xk − yl
(41)

For calculating G(k)(xk; y j ), we employ the quadrature formula

G(k)(xk; y j ) = 1√
x2k − y2j

∫ xk

|y j |
g(�, y j ) exp(i�̃�)√

�2 − y2j

d� =
k∑

i=| j |
gi j

Ei j√
x2k − y2l

(42)

At last we find∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)K2(xk, yl; �, �) d� d� =

n∑
i=1

i−1∑
j=−i

gi j K
(2)
i jkl (43)

with

K (2)
i jkl =

⎧⎪⎪⎨⎪⎪⎩
2

�2
A(k)
l j

Ei j√
x2k − y2l

, i�k

0, i > k

(44)

The kernels K3 and K4 are singular. We divide and multiply them by y20 for obtaining quadrature
formulas similar to the formulas for K1. We get∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)[K3(xk, yl; �, �) + K4(xk, yl; �, �)] d� d�

=
n∑

i=1

i−1∑
j=−i

gi j K
(3,4)
i jkl (45)
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SELF-PROPULSION OF OSCILLATING WINGS 9

with

K (3,4)
i jkl =

⎧⎪⎪⎨⎪⎪⎩
Al j (yl − y j )

2√
1 − y2j

[K3(xk, yl; xi j , y j ) + K4(xk, yl; xi j , y j )]Ei j , i �= j

0, i = j

(46)

The kernels K5, K6, K7 and K8, have integrable singularities and we utilize the quadrature
formulas∫ ∫ ∗

D
f̃ (�, �) exp(i�̃�)Kp(xk, yl; �, �) d� d�=

n∑
i=1

i−1∑
j=−i

gi j K
(p)
i jkl , p= 5, 6, 7, 8

where

K (5)
i jkl =

{
�̃2B(k)

jl Ei j , i�k

0, i > k
(47)

B(k)
jl = (y j+1 − yl) ln |y j+1 − yl | − (y j − yl) ln |y j − yl | (48)

K (p)
i jkl = Ei j K p(xk, yl; xi j , y j )/n, p= 6, 7, 8 (49)

For calculating K7(xk, yl; xi j , y j ), we use the series expansions of the Bessel and Strouve
functions and we take into account that

K7(xk, yl; xi j , yl) = − �̃2(�(1) + �(2))

4
+ �i�̃

4

�(1) = −0.5772, �(2) = 0.4228

(50)

The kernel K8(xk, yl; xi j , y j ) is an integral which is evaluated numerically with the trapezoidal
rule. Denoting

Ki jkl = K (1)
i jkl + K (2)

i jkl + K (3,4)
i jkl + K (5)

i jkl + K (6)
i jkl + K (7)

i jkl + K (8)
i jkl

we obtain, discretizing the two-dimensional integral equation (2),

�

4�

n∑
i=1

i−1∑
j=−i

gi j Ki jkl =−
(

�h(xk, yl)

�x
+ i�̃h(xk, yl)

)
exp(i�̃xk) (51)

After solving this equation, we may obtain

f̃ (xk, yl) = gkl√
x2k − y2l

4. THE AERODYNAMIC COEFFICIENTS

The pressure coefficient is

Cp(x
(1), y(1), t) = Re[ f̃ (x, y) exp(i�t)] (52)
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10 A. CARABINEANU

We are interested in the drag coefficient

CD(t) =−2
∫ ∫

D
nxCp(ax, by, t) dx dy (53)

We consider the oscillating delta wing whose equation is

0= z(1) − � exp(i�1x
(1) + i�t), (x (1), y(1)) ∈ D(1) (54)

where �1 is a constant complex number. Hence

h(x, y)= � exp(i�̃1x), �̃1 = a�1, (x, y)∈ D (55)

For calculating the drag coefficient numerically, we employ the quadrature formulas

CD(t) = 2� i�̃1 exp(i�t)

n2
·
n−1∑
k=1

exp

(
i�̃1

k

n

)

×
[

k−1∑
j=−k

Cp

(
ka

n
,
(2 j + 1)b

2n
, t

)
+ 1

2
Cp

(
ka

n
,
(−2k + 1)b

2n
, t

)

+1

2
Cp

(
ka

n
,
(2k − 1)b

2n
, t

)]
(56)

5. THE LOW ASPECT RATIO OSCILLATORY DELTA WING. ANALYTICAL RESULTS

In this section, we consider that � � 1. From (15)–(23) (we omit the details of calculus) it follows
the asymptotic approximation∫ x0

−∞
exp(i�̃s)

(s2 + �2y20)
3/2

ds = 1

�2y20
(1 + sgn x0) + O(ln(�)) (57)

whence we deduce that

∫ ∫ ∗

D
f̃ (�, �) exp(−i�̃x0)

(∫ x0

−∞
exp(i�̃s)

(s2 + �2y20)
3/2

ds

)
d� d�

=
∫ ∫ ∗

D
f̃ (�, �) exp(−i�̃x0)

1

�2y20
(1 + sgn x0) d� d� + O(ln(�)) (58)

We consider wings whose trailing edge is a straight line, perpendicular to Ox . In the Oxy-plane,
we denote by

x = x−(y) (59)
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SELF-PROPULSION OF OSCILLATING WINGS 11

or by

y = y±(x) (60)

the equations of the leading edge. We consider that the domain D is convex and the functions
y+(x) and y−(x) are monotone. Introducing the function

P(x, �) =
∫ x

x−(�)

f̃ (�, �) exp(−i�̃x0) d� (61)

from (57) and (58), we deduce

∫ ∫ ∗

D
f̃ (�, �) exp(−i�̃x0)

(∫ x0

−∞
exp(i�̃s)

(s2 + �2y20)
3/2

ds

)
d� d�

=2FP
∫ ′y+(x)

y−(x)
P(x, �)

1

�2y20
d� + O(ln�) (62)

where

FP
∫ y+(x)

y−(x)
P(x, �)

1

y20
d� = lim

	→0

[(∫ y−	

y−(x)
+
∫ y+(x)

y+	

)
P(x, �)

1

y20
d� − 2

P(x, y)

	

]
(63)

is the finite part of the integral taken into consideration in Ch. Fox’s sense [12]. From (2) and
(62), we deduce that the two-dimensional integral equation is reduced to

1

2�
FP
∫ y+(x)

y−(x)

P(x, �)

y20
d� =−�

(
�h
�x

(x, y) + i�̃h(x, y)

)
(64)

if we neglect the terms of order O(�2 ln�). After solving (64), we find f̃ (x, y) using the relation

f̃ (x, y) = �P(x, y)

�x
+ i�̃P(x, y) (65)

Since
1

y20
= − d

dy

1

y0
= d

d�

1

y0

and

P(x, y−(x))= P(x, y+(x))= 0 (66)

after an integration by parts, (64) becomes

1

2�

∫ ′y+(x)

y−(x)

�P(x, �)

��

d�

y0
= �

(
�h
�x

(x, y) + i�̃h(x, y)

)
(67)

where the prime ‘′’ is for Cauchy’s principal value. From (66), we get∫ y+(x)

y−(x)

�P(x, �)

��
d� = 0 (68)
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12 A. CARABINEANU

The solution of the integral singular equation (67) with the condition (68) is [10]:
�P(x, �)

��
= 2

�

�√
(� − y−)(y+ − �)

∫ ′y+(x)

y−(x)

√
(t − y−)(y+ − t)

t − �

(
�h
�x

(x, t) + i�̃h(x, t)

)
dt

whence

P(x · y)=2�

�

∫ y

y−

(∫ ′y+

y−

√
(t−y−)(y+−t)

t−�

(
�h(x, t)

�x
+i�̃h(x, t)

)
dt

)
d�√

(�−y−)(y+−�)
(69)

In the particular case when h does not depend on the second variable, on the basis of relation∫ ′y+

y−

√
(t − y−)(y+ − t)

t − �
dt = �

(
y+ + y−

2
− �

)
(70)

we deduce∫ y

y−

(∫ ′y+

y−

√
(t − y−)(y+ − t)

t − �
dt

)
d�√

(� − y−)(y+ − �)
= �

√
(y − y−)(y+ − y) (71)

whence it follows

P(x, y)= 2�
√

(y − y−)(y+ − y) ·
(
dh

dx
+ i�̃h(x)

)
(72)

Taking into account (65) we deduce

f̃ (x, y) = 2�
�
�x

[(
dh

dx
+ i�̃h(x)

)√
(y − y−)(y+ − y)

]

+ 2i�̃�

(
dh

dx
+ i�̃h(x)

)√
(y − y−)(y+ − y) (73)

For the delta plate, with

h(x, y)= � exp(i�̃1x), y+(x)= x, y−(x)=−x, x ∈ [0, 1]
from (73), we obtain

f̃ (x, y)= 2�� exp(i�̃1x)

[
i(�̃1 + �̃)

x√
x2 − y2

− (�̃1 + �̃)2
√
x2 − y2

]
(74)

From the previous formula, we deduce that

f̃ (x, y) = g(x, y)√
x2 − y2

(75)

where g(x, y) is a finite function.
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SELF-PROPULSION OF OSCILLATING WINGS 13

6. ANALYTICAL AND NUMERICAL RESULTS. THE PROPULSIVE FORCE

In order to have an intuitive view of the temporal variation of the pressure coefficient distribution
over the wing, in Figures 1 and 2, we present the shape of the flexible wing and the pressure
coefficient field CP/� for the values of the non-dimensional time 2�t/� ∈ {0, 1, 2, 3} and for the
non-dimensional frequencies �̃= �/4, �̃1 = 2�/3.

We considered n = 15 (i.e. 225 nodes) and �= 1/10. In Figure 1, the pressure coefficient field
was obtained with the numerical method and in Figure 2 it was obtained by means of analytical
formula (74). We notice that the corresponding coefficient pressure fields from the two figures are
very close. Another visual comparison between the numerical and analytical results is performed
in Figure 3. In the right-hand column, we present the numerical results. For every value of the
non-dimensional time 2�t/� ∈ {0, 3/2, 3}, one draws a wireframe mesh and a contour plot beneath
the mesh for the pressure coefficient field CP/� versus the nodes of the grid. Similar analytical
results are presented in the left-hand column.

We notice that the numerical and analytical results are close but not identical. The main reason
for the existence of some differences between the two types of results is that the analytical solution
is the solution of an integral equation which approximates the original integral equation. Since the

Figure 1. Pressure coefficient field calculated anatically.
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14 A. CARABINEANU

Figure 2. Pressure coefficient field calculated numerically.

order of approximation is O(� ln�) we expect to have a better agreement between the analytical
and numerical results when � decreases. In order to verify that the numerical solutions of the
integral equations converge to the exact solution we may check up that the difference between
two solutions corresponding to two different numbers of nodes (control points) decreases when
the two different numbers of nodes increase.

In Figure 4, we present the pressure coefficient distribution CP/� along the trailing edge of the
wing for the aspect ratio �= 1/2, �= 1/10 and �= 1/100. We notice that for small values of �,
the numerical results come nearer to the analytical ones. The numerical results are calculated for
25, 100, respectively, 225 nodes. We find that in the points from the trailing edge the difference
between the pressure coefficients calculated for 225 and 100 grid nodes is smaller than the difference
between the pressure coefficients calculated for 25 and 100 grid nodes.

Since the drag coefficient varies periodically, we may calculate the average drag coefficient

C̃D = 1

T

∫ T

0
CD(t) dt 	 1

k

k∑
l=1

CD

(
lT

k

)
where T is the period of the oscillation.
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Figure 3. Comparison between pressure coefficient fields calculated numerically and analytically.

In Figure 5 we present, for �̃1 = �/4, the average drag coefficient (divided by �2) versus
the reduced frequency �̃. We notice that the average drag coefficient is negative, i.e. it appears a
propulsive force (thrust) and the absolute value of this propulsive force increases when �̃ increases.
In fact there exists a drag, F>0 determined for example by the viscosity of the fluid (that we have
not taken into consideration). Assume that for a certain critical value �̃cr of the reduced frequency
we have

F + FD = 0 (76)

where FD = 1
2�0V

2
0 abC̃D is the propulsive force. Condition (76) is necessary for having an average

constant translation velocity V0 of the wing. When �̃>�̃cr, we have F + FD<0 and it appears an
acceleration having the sense and direction of the uniform translation velocity, which increases. In
the same time �̃= �a/V0 diminishes until it attains the value �̃cr. Conversely, when �̃<�̃cr, we
have F + FD<0 and it appears an acceleration having the sense opposite to the uniform translation
velocity, which decreases. In the same time �̃= �a/V0 increases until it attains the value �̃cr.
Hence, the average velocity of the wing tends to become constant. We conclude that for obtaining
the null drag, to every value � of the frequency, it corresponds a value V0 of the uniform translation
velocity and V0 is an increasing function of �.
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Figure 4. Pressure coefficient field on the trailing edge.

Figure 5. Average drag coefficient versus reduced frequency.
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SELF-PROPULSION OF OSCILLATING WINGS 17

NOMENCLATURE

Ox (1)y(1)z(1) system of Cartesian coordinates moving
with the wing

Oxyz fixed system of Cartesian coordinates
t time
a wing chord
b half-span
(x, y, z) = (x (1)/a, y(1)/b, z(1)/a) dimensionless Cartesian coordinates
D(1) wing projection on the Ox (1)y(1)-plane
D ={(x, y); (ax, by)∈ D(1)};
V0 uniform translation velocity of the wing
�= b/a aspect ratio
� frequency of the oscillation
�̃=�a/V0 reduced frequency
z(1) − h(1)(x (1), y(1)) exp(i�t) equation of the oscillating wing
�0 density of the fluid at rest
v= (u, v, w) velocity
p pressure
Cp pressure coefficient
CD drag coefficient
C̃D average drag coefficient
�0Re( f exp(i�t)) jump of the pressure

h(x, y) = h(1)(x (1),y(1))
a , f̃ (x, y)= f (x (1),y(1))

V 2
0

dimensionless functions

�, � dimensionless Cartesian variables
x0 = x − �, y0 = y − �;
I1, K1 Bessel functions
L−1 Strouve function
�,�1 complex constants
z(1) = � exp(i�1x (1) + i�t) equation of the oscillating delta wing
K (x, y; �, �), . . . , K8(x, y; �, �) kernels of the integral equation.

APPENDIX A

We consider the continuity and Euler equations for incompressible flow in a fixed Cartesian frame
of reference Oxyz,

div v= 0, v= (u, v, w)

�v
�t

+ (v · grad)v + 1

�0
grad p= 0

(A1)

Writing the equation of the wing

S : F(x, y, z, t) = z − h(x, y, t), (x, y)∈ D
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18 A. CARABINEANU

we have the coordinates of the normal at the wing surface S:

n= (nx , ny, nz, nt ) =
(

−�h
�x

, −�h
�y

, 1, −�h
�t

)
(A2)

We linearize the equations around the rest state (neglecting the products of the perturbation
quantities) and we write them into distributions:

�u
�t

+ 1

�0

�p
�x

=
(

[u]Snt + 1

�0
[p]Snx

)

S = 0 (A3)

�v

�t
+ 1

�0

�p
�y

=
(

[v]Snt + 1

�0
[p]Sny

)

S = 0 (A4)

�w

�t
+ 1

�0

�p
�z

=
(

[w]Snt + 1

�0
[p]Snz

)

S = f 
D, f = [p]S

�0
(A5)

�u
�x

+ �v

�y
+ �w

�z
= ([u]Snx + [v]Sny + [w]Snz

)

S = 0 (A6)

where �
S represents the simple layer distribution with density � and [·]S is the jump over the
surface S. From (A3)–(A6) we get

(
�2

�x2
+ �2

�y2
+ �2

�z2

)
p= �

�z
([p]S
D) = �

�z
(�0 f 
D) (A7)

Since (
�2

�x2
+ �2

�y2
+ �2

�z2

)(
− 
(t)

4�|x|
)

= 
(x, y, z)
(t), |x| =
√
x2 + y2 + z2 (A8)

we get

p=−�0

(t)

4�

�
�z

1

|x| ∗ f 
D (A9)

whence, taking into account (A3), we deduce

�w

�t
= 
(t)

4�

�
�z2

1

|x| ∗ f 
D + f 
D (A10)
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SELF-PROPULSION OF OSCILLATING WINGS 19

From (A9) and (A10) we have, denoting by H(t) Heaviside’s function,

w(x, y, z, t) = −H(t)

4�

(
�2

�x2
+ �2

�y2

)
1

|x| ∗ f 
D

= − 1

4�

∫ ∞

−∞
H(t − t ′) dt ′

∫ ∫
D(t ′)

(
�2

�x2
+ �2

�y2

)
f (x′, t)
|x − x′| dx

′ dy′

z �=0= 1

4�

∫ t

−∞

∫ ∫
D(t ′)

�2

�z2
f (x′, t)
|x − x′| dx

′ dy′ dt ′ (A11)

We introduce a new system of coordinates O(1)x (1)y(1)z(1) which is related to the lifting surface
and has a uniform translation motion with the velocity −V0i with respect to the Oxyz system of
coordinates. We have the relations

x (1) = x + V0t, y(1) = 1, z(1) = z (A12)

Denoting x ′(1) = x ′ + V0t ′, s(1) = x (1) − x ′(1) − V0(t − t ′), integral representation (A11) becomes,
for z(1) �= 0,

w(x(1), t) = 1

4�V0

∫ x (1)−x ′(1)

−∞
ds(1)

∫
D(1)

�2

�z(1)2
f (x′(1), t)√

s(1)2+(y(1)−y′(1))2+z(1)2
dx ′(1) dy′(1) (A13)

where D(1), the projection of the lifting surface onto the O(1)x (1)y(1)-plane is a fixed surface.
Considering the lifting surface subjected to harmonic oscillations, we set

w(x(1), t) = d(1)(x(1)) exp(i�t), f (x (1), y(1), t) = f (x (1), y(1)) exp(i�t) (A14)

whence it follows

∫ ∫
D(1)

dx ′(1) dy′(1)
∫ x (1)−x ′(1)

−∞
f (x ′(1), y′(1)) exp

(
−i

�

V0

(
x (1) − x ′(1) − s(1)

))

× �2

�z(1)2
1√

s(1)2 + (y(1) − y′(1))2 + z(1)2
ds(1) = 4�V0d

(1)(x(1)) (A15)

We introduce the dimensionless coordinates

(x, y, z, s, ��) =
(
x (1)

a
,
y(1)

b
,
z(1)

a
,
s(1)

a
,
x ′(1)

a
,
y(1)

b

)
(A16)

For the sake of simplicity, we use again the notation (x, y, z) which must not be confounded
with the notations for the variables of the fixed system Oxyz. Denoting

D ={(x, y); (ax, by) ∈ D(1)}
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20 A. CARABINEANU

and passing to limit for z → 0, we get from (A15)

ab

4�V0

∫ ∫ ∗

D
f (a�, b�) exp

(
−i

�

V0
a(x − �)

)⎛⎜⎜⎝∫ a(x−�)

−∞

exp

(
i
�

V0
s

)
ds

(s2 + b2(y − �)2)3/2

⎞⎟⎟⎠ d� d�

=−d(x, y) (A17)

In the framework of the linearized theory,

d(x, y) exp(i�t) = w(x (1), y(1), t) (A18)

where w is the projection of the velocity on the Oz(1)-axis.
The velocity field with respect to the Ox (1)y(1)z(1)-system of coordinates is

V= V0i + v, v= ui + vj + wk

where v is the perturbation velocity of the fluid.
For calculating the downwash distribution, we employ the slipping condition

V · n|D(1) = − �F/�t
|grad F | (A19)

with

n= grad F

|grad F | =−�h(1)

�x (1)
exp(i�t)i − �h(1)

�y(1)
exp(i�t)j + k (A20)

Since

�F
�t

= −i�h(1)(x (1), y(1)) exp(i�t) (A21)

from (A19) and (A20), we obtain the linearized condition

w =
(
V0

�h(1)

�x (1)
+ i�h(1)

)
exp(i�t) (A22)

Denoting

h(x, y)= h(1)(x (1), y(1))

a
, �̃= �a

V0

from (A18) and (A22) it follows

d(x, y)= V0

(
�h(x, y)

�x
+ i�̃h(x, y)

)
(A23)
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Introducing the dimensionless functions and variables

d̃ = d

V0
, f̃ (x, y) = f (ax, by)

V 2
0

, x0 = x − �, y0 = y − �

equation (A17) becomes

�

4�

∫ ∫ ∗

D
f̃ (�, �) exp(−i�̃x0)

(∫ x0

−∞
exp(i�̃s)

(s2 + �2y20)
3/2

ds

)
d� d�

=−
(

�h(x, y)

�x
+ i�̃h(x, y)

)
(A24)
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